

2020

Product/Market Design Report
Product: Owl-Eye: Espy-Drone

Document #: CPE4800-MDR-Ver5.4

Creation Date:2/17/2020

File: MDR-PDR.DOCX

Authors: Erick Cueva, Joel J. Morel, Tyler Davison, Marquis Guy

[CPE 4800 Kennesaw State University]

 12/7/2020

1 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

Table of Contents
REVISION HISTORY ... 3

1. Executive Summary .. 4

1.1 Business Objective ... 4

1.2 Key Features and Attributes .. 5

1.3 Value and Benefits to Customers .. 6

1.4 Team .. 6

2. Risks and Mitigations ... 7

2.1 Risk Analysis ... 7

2.2 Risk Chart .. 7

2.3 Mitigation Plan ... 8

3. Financial Data .. 9

3.1 Preliminary Bill of Materials... 9

3.2 Cost of Goods Sold ... 10

3.3 Unit Price ... 10

3.4 3-year ATAR Sales and Revenue Forecast .. 10

3.5 Profit Margin Projection ... 10

4. System Architecture ... 11

4.1 Project Ecosystem .. 11

4.2 Product Diagram .. 11

4.3 System Breakdown ... 12

4.4 Building Blocks .. 13

4.4.1 Flight Platform .. 13

4.4.2 3D Mapping Camera ... 13

4.4.3 Control Unit integration .. 14

4.4.4 Sensory Systems... 14

4.4.5 Ground Station and Communication .. 15

4.4.6 Preliminary 3D Mapping... 15

4.4.7 Controlled Flight ... 16

4.4.8 Platform and Program Optimizations .. 16

5. Market Requirements.. 17

5.1 - Key Product Features (Functional Requirements) .. 17

5.2 - Key Performance Requirements .. 18

5.3 Product Documentation Requirements .. 18

5.4 Miscellaneous Market Requirements ... 19

6. Product Requirements ... 19

6.1 Performance Requirement Mapping .. 19

6.2 Functional Requirement Mapping ... 20

 12/7/2020

2 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

7. Project Implementation ... 21

7.1 Milestone1 – Pipelines ... 21

7.1.1 Task 1: Send PixHawk information through the pi to the base station .. 21

7.1.2 Task 2: Send video feed from Realsense to the pi to the base station ... 21

7.1.3 Task 3: Publish commands to the pi from the base station ... 22

7.1.4 Task 4: Controlled flight from the base station / Controlled flight from pi 22

7.1.5 Task 5: Have all sensors accounted for and a python script written for each sensor 23

7.2 Milestone2 – Sensory Development .. 25

7.2.1 Task 1: Sensor Addressing .. 25

7.2.2 Task 2: PCB Implementation with Sensors .. 25

7.2.3 Task 3: Preliminary Scan of Obstacle Course .. 26

7.3 Milestone3 – Device Synthesis ... 26

7.3.1 Task 1: Interfacing the Drone with the PCB... 26

7.3.3 Task 3: Preliminary Navigation and Redundancy features .. 27

8. Challenges and Solutions .. 28

8.1 Rtabmap ... 28

8.2 Communication and Latency .. 28

8.3 PCB Design.. 29

8.4 Sensor Connection Issues ... 29

8.5 Base Station and Compatibility ... 30

9. Customer Usage Scenario ... 31

9.1 Use Case Scenario #1: Manual Flight Mode .. 31

9.2 Use Case Scenario #2: Auto Flight Mode .. 31

10. Scenario Case Phases .. 32

10.1 Use Case Phase: Initiation Phase ... 32

10.2 Use Case Phase: Flight Phase .. 32

10.3 Use Case Phase: Waypoint Navigation Phase .. 33

10.4 Use Case Phase: Landing Phase .. 33

11. Project Conclusion .. 34

11.1 Results and Final Thoughts ... 34

11.2 What we would have liked to do different? .. 35

11.3 Future Goals/Aspirations .. 35

Index .. 37

Table of Figures ... 37

 12/7/2020

3 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

REVISION HISTORY
WHO DATE REASONS FOR CHANGES VERSION

Joel 02/17/20 Initial Release Ver. 1.0

Erick 02/20/20 Added use case scenarios Ver. 1.2

Erick 03/03/20 Project management Ver. 2.0

Tyler/Marquis 03/04/20 Building block 2 & 3 Ver. 2.1

Everyone 03/12/20 A lot of Formatting Ver. 2.2

Everyone 03/12/20 PDR revisions Ver. 3.0

Everyone 03/19/20 Updated Risk analysis, block description, blocks Ver. 3.1

Erick 03/19/20 Updated Project Professional Document Ver. 3.2

Joel 03/19/20 Updated Use case Scenarios and added phases Ver. 3.3

Everyone 03/19/20 Updated and Finalized Building Block Ver. 3.4

Joel 03/26/20 Edits from meeting with dr. ho Ver. 4.0

Joel 04/06/20 Reorganization Ver. 4.1

Everyone 04/07/20 Feedback adjustments Ver. 4.2

Joel 04/09/20 System Ecosystem Ver. 4.3

Erick 04/09/20 Building Blocks Ver. 4.4

Everyone 04/10/20 Project professional and block description Ver. 4.5

Joel 05/01/20 Risk analysis edits Ver. 5.0

Erick and Tyler 05/02/20 Executive Summery Ver. 5.1

Erick 05/03/20 Financial Data Ver. 5.2

Joel 05/03/20 Requirement Mapping Ver. 5.3

Joel 05/03/20 Captioning Ver. 5.4

Everyone 11/03/20 Added new sections Ver. 6.0

Joel 12/06/20 Milestones section Ver. 6.1

Everyone 12/06/20 Challenges section Ver. 6.2

 12/7/2020

4 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

1. Executive Summary
1.1 Business Objective

Figure 1: Prototype Drone V1

When we first set out on this project, our goal was to develop a durable, cost-efficient drone for

use in mapping hazardous areas. We feel like we have achieved these goals in our design of the Owl-Eye:

Espy-Drone. In order to keep the cost of our drone to a minimum, the KISS methodology was integrated

within our development process and COTS were chosen for most of our components. Any required

specialized components are designed to be 3d printed from affordable plastic materials and printers.

The main feature of the Owl-Eye is its ability to stream real-time camera data to a handheld

device. A RGBD camera will allow or drone to wirelessly stream RGB and depth video data to a

handheld device. Once it is received, the camera data, along with other telemetry, will be used to build a

3d representation of the drone’s surroundings. This data will be viewable in real time, allowing for the

operators to quickly respond to a recorded incident. If desired, the recorded data can also be uploaded to

a cloud platform like AWS or Azure.

Two flight settings will be available for our drone in order to allow for a high level of

compatibility with multiple use cases. One option will be manual flight with the use of a handheld

terminal, and the other will be “hands free” autonomous flight. In order to allow for autonomous flight,

multiple sensors and a Simultaneous Localization and Mapping (SLAM) algorithm will be used in

conjunction with the main camera. This will allow the device to keep itself oriented in space and avoid

any potential obstacles. As an additional safety feature, a temperature sensor will be used to keep track of

ambient temperature. The data from this sensor will be used to warn the operator if the drone is in an area

too warm to be used effectively.

 12/7/2020

5 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

1.2 Key Features and Attributes

Figure 2: Billboard Advertisement

The Owl Eye: Intel Drone will come with the following features and attributes:

• RGBD 3D Camera for room mapping and model generation

• GPS and gyroscope modules that help provide drone location in relation to the ground station.

• Real-Time data transmission from the Raspberry Pi to the ground station.

• In the event of physical environmental damage, there is an autosave feature that will save all

recent data collected, allowing the user to retrieve stored data.

• The drone has both manual and autonomous control modes that provided the user with the option

for hands free flight.

• Object detection to avoid crashing.

• Safety landing procedure in case of low power.

 12/7/2020

6 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

1.3 Value and Benefits to Customers

Figure 3: Target Audience

When in high-risk situations, like responding to a disaster or a military operation, protecting

human life is the primary objective. Sadly, events like 9/11 led to 343 firefighter deaths when responding

to the disaster. To save lives, firefighters must put themselves at risk within this unstable environment.

When in other situations, like a military operation, the objective is to acquire intel within enemy lines.

Soldiers must also put themselves at risk to acquire such information.

Our product provides a solution to these situations by significantly reducing certain risk factors.

In the situation of firefighters responding to building wreckages, before they begin entering the building,

they can deploy our drone that will begin maneuvering through building and mapping its surroundings.

This allows firefighters to get a rough image of the inside before they enter to spot potential weaknesses.

The drone could even facilitate in spotting hurt or trapped civilians. In the scenario of soldiers within

enemy lines, soldiers could get an accurate depiction of the of the building they would be infiltrating

before entering. This could provide crucial information about number of targets and whether is it worth

entering. It could map out potential escape routes for hostages or even provide information for an

extraction point. While these environments still pose a threat, our device significantly reduces the risk

factors.

1.4 Team

WHO Field of Study SKILL SETS ROLE
Erick Cueva Computer

Engineering

Managing/Organization,

Hardware, and minor

Programming.

Project Leader and

Documentation

Joel J Morel Computer and

Mechatronics

Engineering

Programming, Drones, 3D

CAD, and Concept

Manufacturing and Testing

Flight Engineer and

Programmer

Tyler Davison Computer

Engineering

Machine vision, robotics

programming, Embedded

Linux

Software Architect

Marquis Computer
Engineering

Solidworks, Programming,
Manufacturing

CAD Design and Physical
Testing

 12/7/2020

7 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

2. Risks and Mitigations
2.1 Risk Analysis

RISK ID# DESCRIPTION LIKELIHOOD SEVERITY
RSK-001 Failure of 3D Mapping

software/hardware

40% 100%

RSK-002 Autonomous Flight 70% 25%
RSK-003 Flight failure 65% 80%
RSK-004 Navigation Failure 30% 20%
RSK-005 Realtime Communications 45% 90%
RSK-006 Drone Structure 10% 80%
RSK-007 Control Unit Integration 30% 50%
RSK-008 Sensory System 20% 70%
RSK-009 ROS Docker processing 40% 40%

2.2 Risk Chart

 12/7/2020

8 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

2.3 Mitigation Plan

RISK ID# Mitigation Plan Action Plan
RSK-001 This will be one of the first task to

accomplish as acquiring the 3D

mapping will be the proof of concept
for the project

If 3D mapping is not acquirable than we

will fall back to 2D or consider project

failure and immediately jump to a backup
project.

RSK-002 Manual flight will need to be

accomplished first then the integration
of autonomous would utilize AI

Programs that could be utilize from

online and reworked for our needs

If we do not acquire autonomous

movement, we will resort to manual flight.

RSK-003 Obtain a working platform capable of
flight and able to withstand double its

weight

Remove least crucial parts, if not we resort
to a terrestrial drone.

RSK-004 With the autonomous working we will

utilize it from a rudimentary waypoint
navigation.

If we cannot get the drone to return to

home base after low battery (5%), we will
aim to safely land the drone and wait for

rescue

RSK-005 Ensure the connection to the Wi-Fi of
both control system and control unit

once accomplish establish a stable

socket.

The is one of our biggest advertisements,
not being able to do this will be close to

product failure and we will resort to saving

the information on the drone itself and

assure a program to return to home base
after satisfied mapping.

RSK-006 For the beginning stages we will

utilize a carbon fiber frame to ensure
that we will have a sturdy frame that

can hold all the components

If a flight platform that can hold the

components is not found, we will default to
a terrestrial drone

RSK-007 We will conduct initial testing to first

prove that the PixHawk and raspberry
pi4 can communicate with each other

Should the PixHawk and pi be unable to

communicate we will utilize a telemetry
module directly to a laptop.

RSK-008 Once RSK-007 is resolved we will

focus on being able to pull

information from the PixHawk

We will utilize a telemetry module on the

side connected to the ground station to

obtain the sensory information

RSK-009 Ros will first be tested on the

raspberry pi to ensure it can be

implemented in the early stages

If RoS proves inconclusive we will use

python threading to build the coding and

communication for the drone.

 12/7/2020

9 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

3. Financial Data
3.1 Preliminary Bill of Materials

Part Part number Quantity Price

Flight Platform

4GB Raspberry Pi 4 SB-PRT-008 1 $60.00

Intel RealSense B415 SB-PRT-010 1 $150.00

PixHawk Mini Package 1 $125.00

---3DR Pixhawk Mini SB-PRT-006 1 ---

---Power Module SB-PRT-004 1 ---

---GPS Module SB-PRT-007 1 ---

4S Lipo Battery SB-PRT-005 1 $50.00

Inland PLA+ SB-PRT-013 1 $16.00

3 SPOT Lidar SB-PRT-009 1 $42.00

4 Brushless Motor SB-PRT-002 1 $34.00

12 5inch Props SB-PRT-014 1 $15.00

Carbon Fiber Platform SB-PRT-001 1 $25.00

4 Kiss ESC SB-PRT-003 1 $100.00

Ground Station

Jetson Nano Tablet SB-PRT-012 1 $200.00

Joy Con pair SB-PRT-012 1 $80.00

Wi-Fi repeater SB-PRT-011 1 $40.00

Total $937.00

Figure 4: Price Flow

 12/7/2020

10 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

3.2 Cost of Goods Sold

Base + Play Area Year 1 Year 2 Year 3

Beginning Inventory $1,000,000 $1,500,000 $2,000,000

Ending Inventory $937,000 $1,405,500 $1,874,000

COGS $63,000 $94,500 $126,000

3.3 Unit Price

 Consumer Price Cost to Build

Price per unit

$1200.00 $937

3.4 3-year ATAR Sales and Revenue Forecast

BASE + Play Area Year 1 Year 2 Year 3

Size of Target Market 2,500 3,500 5,000

Annual Growth Rate 20% 20% 20%

Awareness 40% 45% 50%

Trial Rate 70% 65% 60%

Availability 30% 45% 60%

Repeat 60% 70% 80%

Total Sales - units 1000 1500 2500

Total Sales Revenue $1,200,000 $1,800,000 $3,000,000

3.5 Profit Margin Projection

BASE + Play Area Year 1 Year 2 Year 3

Total Sales Revenue $1,200,000 $1,800,000 $3,000,000

Net Income $937,000 $1,405,500 $2,342,500

Gross Profit Margin 21.9% 21.9% 21.9%

 12/7/2020

11 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4. System Architecture
4.1 Project Ecosystem

Figure 5: Product Ecosystem

4.2 Product Diagram

Figure 6: Product Diagram

 12/7/2020

12 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4.3 System Breakdown

Part ID# Description Functionality What Success looks

like?
SB-PRT-001 Drone Platform The platform on which the

flight electronic will be

attached too. Limited to a size
of 1ft by 1ft by 0.5ft.

All electronics fit snugly with

not wasted space and/or wire

hanging near the props.

SB-PRT-002 Brushless

Motors

Drone motors that provided

the needed thrust for flight.

4 motors provide a thrust to

weight ratio of at least 1.2.

SB-PRT-003 Motor ESC’s Motor controllers for precise
control of the Brushless

motors

Precise control of all 4 motor
allow for controlled flight

SB-PRT-004 Power Module Modulate and provides power

to electrical components from
the 4-cell battery.

All electrical components are

adequately powered without
burning anything.

SB-PRT-005 4s Battery The main power source for the

drone.

Has a large enough battery

capacity to last at least
10minutes of flight.

SB-PRT-006 3dr Pixhawk

mini

The main flight controller for

the mapping drone.

Must precisely maintain flight

with a clear response to flight

commands.

SB-PRT-007 GPS Module Global Positioning System to

localization of the drone.

Connect to at least 4 satellites.

SB-PRT-008 Raspberry Pi 4 Main on board mapping

control system.

Receive sensor data from all

connected system and
successfully transmit to the

ground station.

SB-PRT-009 Spot Lidar Uses light pulses to measure a

singular distance

Accurately read a distance from

5in to 24in

SB-PRT-010 Intel RealSense

d415

3d camera that generates a

point cloud in 3d space

Slam success fully connects to

the real sense camera and

generate a rough map

SB-PRT-011 Wi-Fi Booster Boost the Wi-Fi signal of the
ground station

Ground station and flight
system maintain connection to a

minimum of 20ft

SB-PRT-012 Ground Station Controller running slam and
mapping the information from

the drone

Receives all information from
flight system and successfully

processes and generate map

SB-PRT-013

PLA Light and easy to 3d print that

would hold the added
components together

Does not add too much weight

and can withstand the
vibrations and light impacts

SB-PRT-014 5inch Props 5-inch propeller attach to the

drone to produce thrust

Produces enough thrust for the

drone to achieve lift

 12/7/2020

13 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4.4 Building Blocks

4.4.1 Flight Platform

Figure 7: Initial Flight Platform

This building block is directed at achieving successful flight with all the components of

the flight platform. The components consist of parts like the flight controller (PixHawk),

brushless motors, motor ESC, and the power module. Once all parts have been collected, they

will be assembled is as shown in the Product Diagram. They will all be placed on the carbon

fiber platform that is depicted in the image above (CAD). If flight is attainable, we begin

measuring the lift of the drone and begin considering the weight of other devices like the

RealSense camera, Raspberry, and SPOT Lidar

4.4.2 3D Mapping Camera

Figure 8: Intel Realsense D415

This building block’s aim is to interface the RealSense with the Raspberry Pi. There are

several modules and libraries required in order to get the two to interface. Once a stable

connection, we begin testing source code to successfully transmit data points both accurately and

efficiently. This data will be transmitted in real time to our Ground Station, the Nintendo Switch

running Ubuntu. The Ground Station will receive these images via WIFI, download the data, and

begin forming a preliminary map of the room.

 12/7/2020

14 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4.4.3 Control Unit integration

Figure 9: Pixhawk and Raspberry pi Integration

This building block is located on the flight platform. Once we have successfully

established stable flight, we aim to interface the Pixhawk with the Raspberry Pi. This is

necessary to control the Drone from the Ground Station and receive accurate quick flight

instructions when in manual mode. The interfacing of these two devices will be tested by

attempting manual flight control from a standard computer. Once this has been done

successfully, manual flight will be tested from our handheld device.

4.4.4 Sensory Systems

Figure 10: Components of Sensory System

The focus here is data analysis. The goal is to successfully interface the Lidar, RealSense,

and GPS sensors with the Raspberry Pi on the Flight Platform. Each sensor provides a crucial

piece to mapping the surrounding terrain. The data sourced from these components will be used

with a SLAM algorithm for autonomous movement. Once the data is collected on the raspberry

pi, the next goal is transmitting this information in real time to Ground Station.

 12/7/2020

15 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4.4.5 Ground Station and Communication

Figure 11: Ground Station Communications

Once we can receive data from the various sensors to the Raspberry Pi, the goal is to

transmit this data in real time to the Ground Station. The Ground Station consists of a modified

Nintendo Switch running Nvidia’s “Linux 4 Tegra” kernel and an external Wi-Fi repeater. A

Nintendo switch was chosen to be our ground station because it has a built-in display and

controller, along with having the same SoC as the one used in the Nvidia Jetson nano. Having

hardware comparable to a Jetson nano will allow us to make use of the Jetpack api and

specialized GPU hardware for image processing. The Wi-Fi booster will improve the Wi-Fi

connectivity between the drone and Nintendo Switch

4.4.6 Preliminary 3D Mapping

Figure 12: Initial ROS RVIZ Mapping

 Mapping data will be transmitted from the drone to the ground station in real time. The main source of

this data will come from the stereo IR camera on the RealSense D415. 3D mapping will be handled by

RTAB Map, a program used within ROS. 2D mapping will be done by RVIZ using the data from the spot

lidars. The mapping capabilities will be tested in Gazebo, a simulation program included with ROS.

 12/7/2020

16 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

4.4.7 Controlled Flight

Figure 13: First Test of Controlled Flight

The aim here is to take a step back from the handheld controller and be able to control the

drone via a home desktop. This is achievable once the PixHawk and Raspberry Pi have been

interfaced. This is a crucial step that allows control from any location if the Raspberry Pi is

connected via WIFI.

4.4.8 Platform and Program Optimizations

Figure 14: ROS System

Robot Operating System (ROS) is an open-source programming framework used in writing software for

robotic systems. It includes a suite of tools and libraries designed for simplifying the task of developing

code for automated robots. In order to improve stability and performance, ROS will be run from within

docker. Docker is a very popular project software that uses Linux Kernel features such as namespaces and

control groups for containers to be created.

 12/7/2020

17 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

5. Market Requirements
5.1 - Key Product Features (Functional Requirements)
Market

Requirement ID

Functional

Requirement

Verification

Method

Qualification

MR-FNC-001 When in manual mode the

drone must be in full

control of the ground

station operator.

Design Must have

MR-FNC-002 Drone must be able to

carry the added weight of

the sensory system.

Design Must have

MR-FNC-003 Ground station should

keep a save scanned in

case of drone failure.

Design Should have

MR-FNC-004 Drone should have an

emergency shutoff
procedure.

Design Should have

MR-FNC-005 Drone must be able to

autonomously maintain a

distance from nearby

objects.

Design and Testing Must have

MR-FNC-006 Drone must be able to

maintain connection to

ground station.

Program Must have

MR-FNC-007 Drone should safely

return to ground station if

connection is lost.

Design Should have

MR-FNC-008 Sensory system must

accurately track altitude

in relation to ground

station.

Program Must have

MR-FNC-009 Sensory system must
accurately track pitch,

yaw, and roll.

Program Must have

MR-FNC-010 When in auto mode the

drone must be able to

proceed to the mapping

protocol.

Design Must have

MR-FNC-011 The drone should be able

to autonomously navigate

to the waypoint presented.

Program Should have

MR-FNC-012 The drone must transmit

scanned surface back to

ground station in real

time.

Design Must have

MR-FNC-013 Drone must be able to

track its x, y, and z
position in relation to

ground station.

Design Must have

 12/7/2020

18 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

5.2 - Key Performance Requirements

Market

Requirement ID

Performance

Requirement

Verification

Method

Qualification

MR-PER-001 Drone shall have a thrust

to weight ratio of at least

1.2.

Design Must have

MR-PER-002 The Drone shall not

exceed the dimensions

1ft*1ft*0.5ft (L*W*H).

Design Must have

MR-PER-003 Drone shall be able to

maintain flight for a

minimum of 10mins.

Design Must have

MR-PER-004 Propeller shall be

safeguarded for safety.

Design Should have

MR-PER-005 Ground station must

maintain communication

at a minimum distance of

40ft.

Design Must Have

MR-PER-006 Drone shall be able to
map the space within 3.5

meters of itself.

Design Must Have

MR-PER-007 Drone must keep track of

itself in relation to initial

takeoff point.

Design Must Have

MR-PER-008 Drone should be able to

return to takeoff point at a

moment’s notice.

Program Should Have

MR-PER-009 Drone must be capable of

real-time mapping and

transmission back to the

ground station.

Design Must have

5.3 Product Documentation Requirements

Market

Requirement ID

Documentation

Requirement

Verification

Method

Qualification

MR-DOC-001 An instruction sheet that

will explain the various

sensors and their
locations.

Focus Group Must Have

MR-DOC-002 A video demonstrating

the use of the drone in

manual and autonomous

mode.

Focus Group Must Have

MR-DOC-003 A safety/warning

document.

Focus Group Must Have

MR-DOC-004 System diagram of drone. Focus Group Must Have

MR-DOC-005 Orthographic designs. Focus Group Must Have

MR-DOC-006 Detailed instruction of

code operations.

Focus Group Must Have

MR-DOC-007 Addendum of important

equations and functions

Focus Group Must Have

 12/7/2020

19 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

5.4 Miscellaneous Market Requirements

Market

Requirement ID

Miscellaneous

Requirement

Verification

Method

Qualification

MR-MISC-001 Drone shall be compliant

with FAA guidelines.

Design Must Have

MR-MISC-002 The system shall meet

FCC regulatory

compliance

Design Must Have

MR-MISC-003 Must follow Asimov's

laws of Robotics

Design Must have

MR-MISC-004 The system shall meet CE

regulatory compliance

Design Must have

MR-MISC-005 The system shall meet UL

regulatory compliance

Design Must have

6. Product Requirements
6.1 Performance Requirement Mapping
These Performance Requirement Depend on The Mitigation of the following Risks:

Building

Block
RISK
ID#

Description

MR-

PER-

001

MR-

PER-

002

MR-

PER-

003

MR-

PER-

004

MR-

PER-

005

MR-

PER-

006

MR-

PER-

007

MR-

PER-

008

MR-

PER-

009

3D Mapping
Camera

RSK-
001

3D Mapping
software/hardware

 X X

Controlled
Flight

RSK-
002

Autonomous
Flight

X X X X

RSK-
003

Flight failure X X X

Sensory
System

RSK-
004

Navigation Failure X X X X X

Ground
Station and

Comms.

RSK-
005

Realtime
Communications

 X X X

Flight
Platform

RSK-
006

Drone Structure X X X

Control Unit
integration

RSK-
007

Control Unit
Integration

 X X X

Preliminary
3D Mapping

RSK-
008

Sensory System X X X X X

Program
Optimization

RSK-
009

ROS Docker
processing

 X

https://en.wikipedia.org/wiki/Isaac_Asimov

 12/7/2020

20 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

6.2 Functional Requirement Mapping
These Functional Requirement Depend on The Mitigation of the following Risks:

Building

Block
RISK
ID#

Description

MR-

FNC-

001

MR-

FNC-

002

MR-

FNC-

003

MR-

FNC-

004

MR-

FNC-

005

MR-

FNC-

006

MR-

FNC-

007

MR-

FNC-

008

MR-

FNC-

009

MR-

FNC-

010

MR-

FNC-

011

MR-

FNC-

012

MR-

FNC-

013

3D Mapping
Camera

RSK-
001

3D Mapping
software/hardware

 X X

Controlled
Flight

RSK-
002

Autonomous
Flight

 X X X X X X X X X

RSK-
003

Flight failure X

Sensory
System

RSK-
004

Navigation
Failure

 X X X X X X

Ground
Station and

Comms.

RSK-
005

Realtime
Communications

X X X X X

Flight
Platform

RSK-
006

Drone Structure X X X X

Control Unit
integration

RSK-
007

Control Unit
Integration

X X X X X X X X X X

Preliminary
3D Mapping

RSK-
008

Sensory System X X X X X X

Program
Optimization

RSK-
009

ROS Docker
processing

 X X X

 12/7/2020

21 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

7. Project Implementation
7.1 Milestone1 – Pipelines

7.1.1 Task 1: Send PixHawk information through the pi to the base station

The focus is the establishment of communications from the PixHawk to the base station. The sequence

to steps required the connection to the raspberry pi first where we utilize the py drone kit library to

access all parameter and sensory information provided from the PixHawk via a usb connection. The data

collected would be Attitude (Gyro), Heading (Magnetometer), Global location (altitude), Battery,

Velocity, and System information (Status, Mode, Armable).

The following sensory information would be comprised into a custom RoS msg that the base would be
capable of subscribing to. This information would be used in the tracking and status checks of the drone
during its flight plan.

7.1.2 Task 2: Send video feed from Realsense to the pi to the base station

The raspberry pi will publish RGB video data from the Realsense camera to the base station. The

Realsense RGB feed published from the drone is viewable from the base station’s display as either a

series of images or a live video stream. During the setup of the connection the stream was only able to

achieve a constant FPS of 3HZ for the video and 1HZ from the depth field. A better compression system

will have to be utilized and possible use a Wi-Fi dongle to better boost the Wi-Fi signal.

Figure 15: PixHawk data

Figure 16: RGB and Depth msg

 12/7/2020

22 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

7.1.3 Task 3: Publish commands to the pi from the base station

The base station will publish topics used for controlling the drone. Published data values will be

viewable in the terminal. The Raspberry Pi will subscribe to the topics related to drone control. The data

received by the Pi will be viewable from the device’s terminal. With the data now available to the base

station the process of integrating the values for controlled flight and Rtabmap can procced.

7.1.4 Task 4: Controlled flight from the base station / Controlled flight from pi

Utilizing the RoS joy node the connected controller values will be adjust to a range of 1100 to 1900, the

range of value the PixHawk uses to drive the brushless motors. Once set the controller can direct the

drone forwards/backwards, left/right, clockwise/counterclockwise, and fly up/down.

During test it became apparent that the transmission delay clocked at 20ms, due to the system being

real time more time needs to be set into reducing the delay as it was difficult to properly fly the drone.

In addition, much better tuning needs to take place since the drone was far too sensitive. Lastly, Due to

the COVID-19 pandemic this task experienced delays due to lack of in person coordination and suitable

space for test flights.

Figure 17: Controller node

Figure 18: First Stable Flight

 12/7/2020

23 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

7.1.5 Task 5: Have all sensors accounted for and a python script written for each sensor

A bill of materials will be drafted for the sensors used on the PCB. The gas, particle, carbon monoxide,

lidar, and humidity sensors will be individually inspected for their port type (I2C/SPI) and ordered. In

addition, a unique python script will be written for each corresponding sensor and contain the necessary

libraries to properly read the raw data. Once able to print data from all sensors, ROS topics will be

created for each sensor that will then be requested by the base station and display data readings.

BME280 (Required voltage 3.3V)

Test Code:
import board
import busio
import adafruit_bme280 i2c = busio.I2C(board.SCL, board.SDA)
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)
print("\nTemperature: %0.3f C" % bme280.temperature)
print("Humidity: %0.3f %%" % bme280.humidity)
print("Pressure: %0.3f hPa" % bme280.pressure)

Figure 19: PCB Schematic v1

Figure 20: PCB Design v1

Figure 21: BME280

 12/7/2020

24 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

CCS811 Air Quality Sensor Breakout (Required Voltage 3. 3V)

Test Code:

import time
import board
import busio
import adafruit_ccs811 i2c = busio.I2C(board.SCL, board.SDA)
ccs811 = adafruit_ccs811.CCS811(i2c)

while not ccs811.data_ready:
 pass while True:
print("CO2: {} PPM, TVOC: {} PPB".format(ccs811.eco2, ccs811.tvoc)) time.sleep(0.5)

HiLetgo VL53L0X Time-of-Flight Flight Distance Measurement Sensor (Required Voltage 2.8V)

Test Code:
import time
import board
import busio
import adafruit_vl53l0x
i2c = busio.I2C(board.SCL, board.SDA)
vl53 = adafruit_vl53l0x.VL53L0X(i2c)
while True:
 print("Range: {0}mm".format(vl53.range))
 time.sleep(1.0)

Figure 22: CCS811

Figure 23: VL53L0X

 12/7/2020

25 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

7.2 Milestone2 – Sensory Development

7.2.1 Task 1: Sensor Addressing

The libraries for each of the sensors were found and downloaded to interface them properly. Four

python scripts were written to change the addresses of the VL53 lidars. Each script powers on the next

GPIO and sets its address. We will run all four every time we power on due to the fact the lidars lose

their address once powered off. The code provided bellow demonstrates the first python script which

sets four GPIO pins too LOW to address the first VL53 lidar.

Once all the lidar sensors are properly addressed, a test will be conducted using all seven sensors. This

test is part one of two videos created for milestone one. The test will be done using the breadboard

before soldering the sensors to the PCB. Here is an image of the breadboard set up and an image of the

i2cdetect output of all the addresses. Addresses 0x29-0x33 are the VL53 lidars, 0x5a is the CCS811 Air

Quality sensor, and the 0x77 is the BME280. A script was then run to pull values from all the addresses

and print them in the terminal.

7.2.2 Task 2: PCB Implementation with Sensors

Once a finalized schematic of our PCB was designed in

milestone one, the eagle directory files were sent to a

PCB manufacturer where they custom built our board.

The following image is version one of our PCB. I, Erick,

made the mistake of not including the GPIO pins

within the PCB requirements when given to Tyler.

Version One works flawlessly with jumper cables

added from the GPIO ports of the raspberry pi to the

XSHUT of each VL53 lidar. Version Two of the PCB will

have the extra GPIO pins that were missed the first

time around.

Figure 24: Sensor I2C Address

Figure 25: PCB Schematic V1.1

Figure 26: Initial Sensor test

 12/7/2020

26 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

Once the PCB arrived and the breadboard test was complete, all the

sensors were soldered to the PCB. A second test was conducted

which is part two of my video. This test demonstrates all the

sensors connected to the PCB and their addresses being individually

set. Below are images of the PCB with the sensors soldered, the i2c

detect output, and terminal sensor data.

7.2.3 Task 3: Preliminary Scan of Obstacle Course

Using the demo code provided by the Realsense camera, the drone will do a preliminary scan of an

obstacle course created. The drone will not be in flight mode, instead a walkthrough with the drone in

hand will be conducted. The purpose is to obtain accurate RGB, IR, and dot point could data on the base

station. Only the camera data topic will be requested, tested, and displayed on the base station to

prepare for full interfacing in milestone three.

7.3 Milestone3 – Device Synthesis

7.3.1 Task 1: Interfacing the Drone with the PCB

In order to properly address each lidar by milestone two, a python script was created for each individual

lidar. By milestone three, we have reduced these five scripts into a single script that addresses each of

the lidars using the GPIO and XSHUT pins. Their addresses start at 0x29 and end at 0x2D. Now, there are

only two scripts, one that addresses the lidars and the other that prints all the sensor data. Now that the

code is simplified as much as possible, these files were transferred from a Raspien environment onto a

Raspberry Pi 4 running Ubuntu 18.04. This is done to begin working in the same environment the drone

is in. Once all the packages were downloaded, both scripts were run and worked fine. An issue we ran

into is the execution of the script that addresses the lidars. This script can only be run once at startup,

and if there is an error with addressing, the pi4 needs to be rebooted.

Due to some mistakes made the first time around on version 1.0, version 1.1 of our PCB was sent off.

The size of version 1.0 was slightly too large and would not fit on the underside of the drone. For this

reason, we were not able to hook the PCB on the drone, but we were able to demo it properly working

in the milestone video. Despite not having the PCB attached to the drone, we have demonstrated it

functioning properly within the Ubuntu environment by addressing and printing the sensor values.

Figure 27: PCB V1

Figure 28: Preliminary scan

 12/7/2020

27 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

The new PCB will have the adequate XSHUT pins needed for the lidars and two auxiliary ports if we

would like to add another sensor.

7.3.2 Task 2: 3d scan with a controlled flight

The drone will Create a 3d scan while in flight or by handheld to test and prove the sensory connection,

process, and accuracy. The 3d image should be recognizable. We were able to get full control from the

base station to the drone and accurate 3d mapping on a virtual machine. Sadly, due to a major project

oversight we failed to do an inflight 3d scan as the Nintendo could not handle the 3d software as such

we will be switching to a laptop with ubuntu installed.

7.3.3 Task 3: Preliminary Navigation and Redundancy features

Failsafe code implementation

A node will be dedicated towards handling the failsafe

procedures for our drone. The node will subscribe to

controller information from the base station, along with IMU

and battery voltage data from the master drone node. While

the drone is in an ideal position or state, the failsafe node will

publish the controller data to the drone’s master node. If the

laser sensors, IMU, or battery voltage data indicate that the

drone is in an unfavorable position or state, the failsafe node

will publish directional data for placing the drone into a more

favorable state instead of the controller data.

Figure 29: PCB Design v1.1

Figure 30: First full scan

Figure 31: Controlled flight test

 12/7/2020

28 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

The redundancy feature to test will be crash avoidance, low power scenario, and crash detection.

• In crash avoidance they will be placed to hover, and a cardboard sheet will approach the drone from

the back, sides, and front. The drone should move away to maintain a minimum distance of 5 cm.

Lastly the drone will do a slow fly forward to a box and it should stop without hitting the box so hard

that it falls.

• For low power, the battery will be drained up to at least 5%. Once the threshold is reached the

drone should forcefully land ignoring pilot input.

• For crash detection when the Z-axis of the IMU reads 9.8 meters per sec, the failsafe code will

disable the drone’s motors, indicating crash detection.

8. Challenges and Solutions
8.1 Rtabmap

During the project, our main choice for the 3d map

was Rtabmap due to it being open source and

integrated with RoS the main operation system for

controlling and communication with the drone.

The biggest issue we faced with Rtabmap was the

sever lack of documentation. Since Rtabmap map

is mainly utilized in a 2d configuration not many

people worked on in in a 3d configuration thus a

lot of the setup and optimization was left to trial

and error. Moreover, due to COVID-19 testing was

limited since the main base station at the time was

a Nintendo switch and many parts of the system

was divided between each member.

Later in the game stage it was discovered that the Nintendo switch we intended to use as the base

station was unable to fully support Rtabmap as the processing power was not enough. Luckily, all files

were easily transferred to a laptop with ubuntu 18.04.

8.2 Communication and Latency
The greatest hurdle to the project was the excessive

delays experienced, the rgb and depth field data at worst

came in at less than 1HZ making it unsuitable to feed to

the Rtabmap. This issue was resolved by using the RoS

msg throttle package to compress the rgb and depth

filed data. In the end we were able to optimize for a

stable rate of 8HZ, for future sake it would be better to

boost the signal or switch to using udp instead of tcp for

the image broadcasting.

Figure 32: Rtabmap Optimization

Figure 33: Corrupted Depth Compression

 12/7/2020

29 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

8.3 PCB Design
One of the biggest challenges when making our board was converting

the project in eagle from a schematic to a PCB design. When the PCB

design was first loaded, we saw a web of yellow lines between the

connections and thought those were the autogenerated traces. It was

later discovered that the lines were not traces but instead

representations of the connections between the components on the

PCB. The traces were eventually added into the design with the auto

routing tool.

Our first PCB design that came in was made a bit too large for the

drone and was not able to be latched to the belly of the drone. We

needed it to be a certain size so it would fit properly, but we

overlooked this in the first version. The first version was also missing

XSHUT connections for each of the VL53 and instead they were all tied

to ground.

One the second version of the PCB, there was a small error where the

ground for the interface and buck converter were not tied, but this

was easily fixed with a small jumper cable. Another error we had with

the second version is one of our voltage traces was short circuiting

one of the XSHUT pins. This was a hard catch to find and was causing

complications when trying to change the address of each lidar.

8.4 Sensor Connection Issues
Our PCB was designed for seven sensors and a buck converter. Five of those seven are the VL53L0X

lidars. Three lidars are directly soldered to the left, right, and bottom pin connections on the PCB while

the other two are interfaced though the auxiliary ports. This is due to the fact we wanted to point lidars

in different directions. A challenge we faced with the

VL53 is being able to address each one. Within the first

version of the PCB, we did not create connections for the

XSHUT pins of the VL53 lidars which are necessary to

address each lidar. We were able to fix this by soldering

some jumper cables to the XSHUT pins of each lidar

which then went to the GPIO pins on the Pi. All the

sensors shared the same power, ground, SDA, and SCL

bus which made creating the schematic a bit easier. The

interface connections from the PCB to the Pi include

power, ground, SDA, SCL, and five GPIO leads for each of

the VL53 lidars.

Figure 34: PCB Design v1.1

Figure 35: PCB Connection Faults

 12/7/2020

30 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

The final two sensors are the BME280 and the CCS811 which are located in the center of the board. The

BME280 measures temperature, pressure, and humidity while the CCS811 measure carbon dioxide

levels and total volatile organic compounds. We also used a buck converter that took in 5 volts from the

Pi and outputted 3.3 volts which is used to power the whole board. A challenge we faced with the

CCS811 is lack of documentation that explained how to interface the sensor. Every time I would run a

test script to print CO2 and TVOC, I would get an error message that said to check the connection to the

board. I thought this meant we had a faulty CCS811, so I ordered another. I had the same issues with the

new CCS811 I ordered, so I decided to purchase a CCS811 from a different manufacture, SparkFun. This

sensor came with documentation that stated we needed to enable clock stretching for the sensor to

work. After editing the /boot/config.txt file and enabling clock stretching, the test script began printing

the CO2 and TVOC values. Now when I tested the Adafruit CCS811, it no longer displayed and error

message and began printing the sensor values.

8.5 Base Station and Compatibility
 One of our primary goals was to develop a base station

platform that was hardware agnostic and user adaptable.

We planned to demonstrate these features by testing our

drone with a handheld a device and a x86 laptop.

Unfortunately, unforeseen compatibility issues on the ARM

device prevented it from being used in this project.

 For our ARM handheld, we decided to use a Nintendo

Switch modified to run the Linux 4 Tegra kernel. This device

seemed like a suitable choice because it has the same SoC as

the Jetson Nano while also having a built-in display and

controller. Unfortunately, the Linux image used an outdated

kernel and a non-standard release of the jetpack API. Both

ended up causing compatibility issues with OpenCV and

RTAB Map that were not noticed until milestone 4. Given the issues we were having and the short

amount of available time, it was decided that only the laptop would be used as the base station.

Figure 36: CCS811 Debug

Figure 37: Nintendo switch

 12/7/2020

31 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

9. Customer Usage Scenario
9.1 Use Case Scenario #1: Manual Flight Mode

9.2 Use Case Scenario #2: Auto Flight Mode

 12/7/2020

32 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

10. Scenario Case Phases
10.1 Use Case Phase: Initiation Phase

10.2 Use Case Phase: Flight Phase

 12/7/2020

33 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

10.3 Use Case Phase: Waypoint Navigation Phase

10.4 Use Case Phase: Landing Phase

 12/7/2020

34 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

11. Project Conclusion
11.1 Results and Final Thoughts

In-Flight Scan

Our final results of the 3d scan left a lot to still be worked out, although the accuracy of the scan came

out fairly well the issue of the drone repeatedly losing itself made it difficult to produced reliable real-

time scans. In addition, the tuning of the flight contained major instability making it hard to fly the drone

in a stable manner. But despite all the issues the project resulted in a great success as a proof of

concept, with better tuning and optimization as well as an upgrade to communications the drone would

be a feasible device for not only disaster relief but many other industrial, and/or militaristic applications.

Figure 38: Owl-EYE

Figure 39: Final Scan Results

 12/7/2020

35 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

Printed Circuit Board

Our final version of the PCB had the corrections necessary to remove the XSHUT jumper cables. There

was a small error where the voltage trace short circuited an XSHUT pin, but overall, the finished design

was excellent. The board provided the ability to interface all these sensos in a small compact manner

that allowed for placement at the belly of the drone. We are able to get sensor data from the five VL53

spot Lidars, CCS811 Air Quality, and BME280 Environmental Sensor. The buck converter takes in 5 volts

from the Pi and outputs 3.3 volts which is used to power the board.

11.2 What we would have liked to do different?
Something we would have wanted to do different is implement the VL53 spot lidars a lot earlier. We

made the mistake of only interfacing a single VL53 and not all of them. This caused an issue when

creating the PCB because we did not create an interface for the GPIO pins. This made us spend more

money to order another PCB and also created some delay within the project.

 Along with using different spot lidars, we would have liked to test Rtabmap and its dependencies

earlier. Incompatibilities between packages and Rtabmap on the base station and the drone were the

main reasons for not using our original base station in the final demo.

11.3 Future Goals/Aspirations
We eventually plan to continue this project and turn it into an actual product that would be used by first

responders. If we plan to do so, there are certain features we would like to improve. We would want a

longer lasting battery for the drone with increased power inefficiency. By increasing the battery life, this

provides first responders with longer flight times in-between battery changes. The longer the drone can

stay in the air, the better but we do not want to increase the weigh too much. We also want better

reliability of the data being sent to the drone while also improving communication. By improving the

communication, we decrease latency and have clear stream of data from the drone module to the base

station.

 Another potential upgrade would be to replace the point lidars with a single spinning lidar. Having this

one lidar would allow the drone to detect objects from all sides. We were unable to add this sensor to

our project because it was not within our budget. Using the spinning lidar would have cost more in

funds, weight, and development time than the spot lidars.

Figure 40: Final PCB Results

 12/7/2020

36 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

 We would also like to add support for other wireless technologies. While scanning our test

environment, we noticed the framerate for our camera feed was considerably low. Given the types of

situations our drone would be used in, we would like to have our base station receive the most relevant

data possible in order to allow the operator to act decisively. Adding a radio for private LTE would afford

the operator more flexibility when he or she is trying to get the best wireless performance between the

base station and the drone. Using a faster router and having a dedicated Wi-Fi adapter on both the base

station and the drone.

Given the scale of our project, we tried to keep a low budget and purchase only what was necessary. If

we were given an unlimited budget, there are several other features we would have liked to add. For

starters, if the spinning lidar proved to be too heavy, we would like to have a total of six spot lidars, one

for every direction. We would also probably go with a higher quality lidar as well to increase the

accuracy and efficiency of our redundancy features. Also, we would change the layout of the PCB to

incorporate more lidars and have less lidars connected to the auxiliary ports. By creating more space on

the PCB, we would only need one lidar connected to the auxiliary ports and this creates less loose wire

while also improving the overall look.

With an increased budget, we would also like to include an oxygen sensor and an MQ2 which is able to

detect LPG, I-butane, propane, methane, alcohol, Hydrogen, and smoke. All this extra information could

paint a better picture of the environment and could notify Ground Station if there could possibly be an

explosion. These extra modules would help responders plan a safer course of entry and exit to keep

both civilians and responders as safe as possible.

Figure 41: added sensors

 12/7/2020

37 | P a g e

Erick Cueva, Joel J. Morel,

Tyler Davison, Marquis Guy
Owl-Eye: Espy-Drone

Index
Table of Figures
Figure 1: Prototype Drone V1 .. 4

Figure 2: Billboard Advertisement ... 5

Figure 3: Target Audience ... 6

Figure 4: Price Flow .. 9

Figure 5: Product Ecosystem ... 11

Figure 6: Product Diagram .. 11

Figure 7: Initial Flight Platform ... 13

Figure 8: Intel Realsense D415 .. 13

Figure 9: Pixhawk and Raspberry pi Integration... 14

Figure 10: Components of Sensory System .. 14

Figure 11: Ground Station Communications .. 15

Figure 12: Initial ROS RVIZ Mapping ... 15

Figure 13: First Test of Controlled Flight ... 16

Figure 14: ROS System ... 16

Figure 16: PixHawk data ... 21

Figure 17: RGB and Depth msg ... 21

Figure 18: Controller node ... 22

Figure 19: First Stable Flight ... 22

Figure 20: PCB Schematic v1 .. 23

Figure 21: PCB Design v1 ... 23

Figure 22: BME280 ... 23

Figure 23: CCS811 .. 24

Figure 24: VL53L0X ... 24

Figure 25: Sensor I2C Address .. 25

Figure 26: PCB Schematic V1.1 .. 25

Figure 27: Initial Sensor test .. 25

Figure 28: PCB V1 .. 26

Figure 29: Preliminary scan ... 26

Figure 30: PCB Design v1.1 .. 27

Figure 31: First full scan .. 27

Figure 32: Controlled flight test ... 27

Figure 33: Rtabmap Optimization .. 28

Figure 34: Corrupted Depth Compression .. 28

Figure 35: PCB Design v1.1 .. 29

Figure 36: PCB Connection Faults ... 29

Figure 37: CCS811 Debug ... 30

Figure 38: Nintendo switch .. 30

Figure 39: Owl-EYE.. 34

Figure 40: Final Scan Results .. 34

Figure 41: Final PCB Results... 35

Figure 42: added sensors ... 36

https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267923
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267924
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267925
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267926
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267927
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267928
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267929
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267930
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267931
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267932
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267933
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267934
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267935
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267936
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267937
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267938
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267939
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267940
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267941
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267942
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267943
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267944
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267945
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267946
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267947
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267948
https://kennesawedu.sharepoint.com/sites/Team-KennX/Shared%20Documents/General/Documentation/Product%20Design%20Report/MDR-PDR_Current.docx#_Toc58267949

